2.3.3 Example: Representing Sets
- View
- Revisions

In the previous examples we built representations for two kinds of compound data objects: rational numbers and algebraic expressions. In one of these examples we had the choice of simplifying (reducing) the expressions at either construction time or selection time, but other than that the choice of a representation for these structures in terms of lists was straightforward. When we turn to the representation of sets, the choice of a representation is not so obvious. Indeed, there are a number of possible representations, and they differ significantly from one another in several ways.
Informally, a set is simply a collection of distinct objects. To give a more precise definition we can employ the method of data abstraction. That is, we define “set” by specifying the operations that are to be used on sets. These are union-set
, intersection-set
, element-of-set?
, and adjoin-set
. Element-of-set?
is a predicate that determines whether a given element is a member of a set. Adjoin-set
takes an object and a set as arguments and returns a set that contains the elements of the original set and also the adjoined element. Union-set
computes the union of two sets, which is the set containing each element that appears in either argument. Intersection-set
computes the intersection of two sets, which is the set containing only elements that appear in both arguments. From the viewpoint of data abstraction, we are free to design any representation that implements these operations in a way consistent with the interpretations given above.[37]
Sets as unordered lists
One way to represent a set is as a list of its elements in which no element appears more than once. The empty set is represented by the empty list. In this representation, element-of-set?
is similar to the procedure memq
of section 2.3.1. It uses equal?
instead of eq?
so that the set elements need not be symbols:
(define (element-of-set? x set)
(cond ((null? set) false)
((equal? x (car set)) true)
(else (element-of-set? x (cdr set)))))
Using this, we can write adjoin-set
. If the object to be adjoined is already in the set, we just return the set. Otherwise, we use cons
to add the object to the list that represents the set:
(define (adjoin-set x set)
(if (element-of-set? x set)
set
(cons x set)))
For intersection-set
we can use a recursive strategy. If we know how to form the intersection of set2
and the cdr
of set1
, we only need to decide whether to include the car
of set1
in this. But this depends on whether (car set1)
is also in set2
. Here is the resulting procedure:
(define (intersection-set set1 set2)
(cond ((or (null? set1) (null? set2)) '())
((element-of-set? (car set1) set2)
(cons (car set1)
(intersection-set (cdr set1) set2)))
(else (intersection-set (cdr set1) set2))))
In designing a representation, one of the issues we should be concerned with is efficiency. Consider the number of steps required by our set operations. Since they all use element-of-set?
, the speed of this operation has a major impact on the efficiency of the set implementation as a whole. Now, in order to check whether an object is a member of a set, element-of-set?
may have to scan the entire set. (In the worst case, the object turns out not to be in the set.) Hence, if the set has n
elements, element-of-set?
might take up to n
steps. Thus, the number of steps required grows as Θ(n). The number of steps required by adjoin-set
, which uses this operation, also grows as Θ(n). For intersection-set
, which does an element-of-set?
check for each element of set1
, the number of steps required grows as the product of the sizes of the sets involved, or Θ(n2) for two sets of size n. The same will be true of union-set
.
If we want to be more formal, we can specify “consistent with the interpretations given above” to mean that the operations satisfy a collection of rules such as these:
-
For any set
S
and any objectx
,(element-of-set? x (adjoin-set x S))
is true (informally: “Adjoining an object to a set produces a set that contains the object”). -
For any sets
S
andT
and any objectx
,(element-of-set? x (union-set S T))
is equal to(or (element-of-set? x S) (element-of-set? x T))
(informally: “The elements of(union S T)
are the elements that are inS
or inT
”). -
For any object
x
,(element-of-set? x '())
is false (informally: “No object is an element of the empty set”).
Exercises
Sets as binary trees
We can do better than the ordered-list representation by arranging the set elements in the form of a tree. Each node of the tree holds one element of the set, called the “entry” at that node, and a link to each of two other (possibly empty) nodes. The “left” link points to elements smaller than the one at the node, and the “right” link to elements greater than the one at the node. Figure 2.16 shows some trees that represent the set {1,3,5,7,9,11}. The same set may be represented by a tree in a number of different ways. The only thing we require for a valid representation is that all elements in the left subtree be smaller than the node entry and that all elements in the right subtree be larger.

The advantage of the tree representation is this: Suppose we want to check whether a number x is contained in a set. We begin by comparing x with the entry in the top node. If x is less than this, we know that we need only search the left subtree; if x is greater, we need only search the right subtree. Now, if the tree is “balanced,” each of these subtrees will be about half the size of the original. Thus, in one step we have reduced the problem of searching a tree of size n to searching a tree of size n/2. Since the size of the tree is halved at each step, we should expect that the number of steps needed to search a tree of size n grows as Θ(log
n).[38] For large sets, this will be a significant speedup over the previous representations.
We can represent trees by using lists. Each node will be a list of three items: the entry at the node, the left subtree, and the right subtree. A left or a right subtree of the empty list will indicate that there is no subtree connected there. We can describe this representation by the following procedures:[39]
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
(list entry left right))
Now we can write the element-of-set?
procedure using the strategy described above:
(define (element-of-set? x set)
(cond ((null? set) false)
((= x (entry set)) true)
((< x (entry set))
(element-of-set? x (left-branch set)))
((> x (entry set))
(element-of-set? x (right-branch set)))))
Adjoining an item to a set is implemented similarly and also requires Θ(log
n) steps. To adjoin an item x
, we compare x
with the node entry to determine whether x
should be added to the right or to the left branch, and having adjoined x
to the appropriate branch we piece this newly constructed branch together with the original entry and the other branch. If x
is equal to the entry, we just return the node. If we are asked to adjoin x
to an empty tree, we generate a tree that has x
as the entry and empty right and left branches. Here is the procedure:
(define (adjoin-set x set)
(cond ((null? set) (make-tree x '() '()))
((= x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set x (right-branch set))))))
The above claim that searching the tree can be performed in a logarithmic number of steps rests on the assumption that the tree is “balanced,” i.e., that the left and the right subtree of every tree have approximately the same number of elements, so that each subtree contains about half the elements of its parent. But how can we be certain that the trees we construct will be balanced? Even if we start with a balanced tree, adding elements with adjoin-set
may produce an unbalanced result. Since the position of a newly adjoined element depends on how the element compares with the items already in the set, we can expect that if we add elements “randomly” the tree will tend to be balanced on the average. But this is not a guarantee. For example, if we start with an empty set and adjoin the numbers 1 through 7 in sequence we end up with the highly unbalanced tree shown in figure 2.17. In this tree all the left subtrees are empty, so it has no advantage over a simple ordered list. One way to solve this problem is to define an operation that transforms an arbitrary tree into a balanced tree with the same elements. Then we can perform this transformation after every few adjoin-set
operations to keep our set in balance. There are also other ways to solve this problem, most of which involve designing new data structures for which searching and insertion both can be done in Θ(log
n) steps.[40]

entry
, left-branch
, right-branch
, and make-tree
as a way of isolating the abstraction of a “binary tree” from the particular way we might wish to represent such a tree in terms of list structure. [back]
Exercises
Sets and information retrieval
We have examined options for using lists to represent sets and have seen how the choice of representation for a data object can have a large impact on the performance of the programs that use the data. Another reason for concentrating on sets is that the techniques discussed here appear again and again in applications involving information retrieval.
Consider a data base containing a large number of individual records, such as the personnel files for a company or the transactions in an accounting system. A typical data-management system spends a large amount of time accessing or modifying the data in the records and therefore requires an efficient method for accessing records. This is done by identifying a part of each record to serve as an identifying key. A key can be anything that uniquely identifies the record. For a personnel file, it might be an employee’s ID number. For an accounting system, it might be a transaction number. Whatever the key is, when we define the record as a data structure we should include a key
selector procedure that retrieves the key associated with a given record.
Now we represent the data base as a set of records. To locate the record with a given key we use a procedure lookup
, which takes as arguments a key and a data base and which returns the record that has that key, or false if there is no such record. Lookup
is implemented in almost the same way as element-of-set?
. For example, if the set of records is implemented as an unordered list, we could use
(define (lookup given-key set-of-records)
(cond ((null? set-of-records) false)
((equal? given-key (key (car set-of-records)))
(car set-of-records))
(else (lookup given-key (cdr set-of-records)))))
Of course, there are better ways to represent large sets than as unordered lists. Information-retrieval systems in which records have to be “randomly accessed” are typically implemented by a tree-based method, such as the binary-tree representation discussed previously. In designing such a system the methodology of data abstraction can be a great help. The designer can create an initial implementation using a simple, straightforward representation such as unordered lists. This will be unsuitable for the eventual system, but it can be useful in providing a “quick and dirty” data base with which to test the rest of the system. Later on, the data representation can be modified to be more sophisticated. If the data base is accessed in terms of abstract selectors and constructors, this change in representation will not require any changes to the rest of the system.
Exercises
Comments
car and cdr
While the clojure interpreter will parse car and cdr, would it be more idiomatic to use first and rest?
On an unrelated note, the text in the editor is very small in Chrome v5 OS X (having to squint).
GDIhKoRHJj
Excellent goods from you, man. [sweet]c3a9c281c2a0c3a4c2bcc28138Fc3a3c281c2aec3a9c2a6c2acc3a5c28fc2afc3a6c2b3c2a2c3a7c2bee280a6c3a9e280a6e28099c3a5c2bbc5a0 |c3a4c2b8e280b9c3a5c28dcb86c3a8c592c2b6 c3a2e284a2c2a5 | c3a8e280bae280b9c3a5c2a0c2a1c3a3c281c2aepeace c3a2cb9cc2ae & love c3a2e284a2c2a5 I’ve understand your stuff prievous to and you are just extremely great. I really like what you’ve acquired here, really like what you are stating and the way in which you say it. You make it enjoyable and you still care for to keep it wise. I cant wait to read much more from you. This is actually a tremendous [sweet]c3a9c281c2a0c3a4c2bcc28138Fc3a3c281c2aec3a9c2a6c2acc3a5c28fc2afc3a6c2b3c2a2c3a7c2bee280a6c3a9e280a6e28099c3a5c2bbc5a0 |c3a4c2b8e280b9c3a5c28dcb86c3a8c592c2b6 c3a2e284a2c2a5 | c3a8e280bae280b9c3a5c2a0c2a1c3a3c281c2aepeace c3a2cb9cc2ae & love c3a2e284a2c2a5 informations.
Post new comment