Exercise 2.37

in
Printer-friendly versionPrinter-friendly version

Suppose we represent vectors v = (vi) as sequences of numbers, and matrices m = (mij) as sequences of vectors (the rows of the matrix). For example, the matrix

is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With this representation, we can use sequence operations to concisely express the basic matrix and vector operations. These operations (which are described in any book on matrix algebra) are the following:

We can define the dot product as[17]

(define (dot-product v w)
  (accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures for computing the other matrix operations. (The procedure accumulate-n is defined in exercise 2.36.)

(define (matrix-*-vector m v)
  (map <??> m))
(define (transpose mat)
  (accumulate-n <??> <??> mat))
(define (matrix-*-matrix m n)
  (let ((cols (transpose n)))
    (map <??> m)))
[17] This definition uses the extended version of map described in footnote 12. [back]

Comments

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <code> <pre> <hr> <ul> <ol> <li> <dl> <dt> <dd> <img>
  • Lines and paragraphs break automatically.
  • Adds typographic refinements.

More information about formatting options